[L1][CO1][5M]



2F



b. Draw the dual circuit for given circuit below.

20

5H 3F 40 10V 4'Ω

2H

**Network Analysis** 

1.



5. Calculate the current in  $2\Omega$  resistor in the given circuit using Super position [L3][CO1][10M] theorem.



6. a. Find the Thevenin's equivalent circuit across AB for the given circuit.

[L3][CO1][5M]



b. Find the Norton's equivalent across AB for the given circuit.

[L3][CO1][5M]



QUESTION BANK 2023-24 [L3][CO1][5M] a. Determine the Maximum power delivered to the load resistance RL 7. **10**Ω 20 23Ω 50V 50 [L3][CO1][5M] b. Verify Reciprocity theorem for the network shown in below figure.  $I_2$ х  $2\Omega$  $1\Omega$ ╈ 2Ω∢ 10V3Ω a. Calculate the current 'I' by using Milliman's theorem. [L3][CO1][5M] 8. 5Ω <u>2 Ω</u> + 10V **3**Ω 20V Verify Tellegen's theorem for the circuit shown in below figure. 20 2 2 [L3][CO1][5M] b. 30 10V 20V 9. Calculate the voltage & current within all the resistors by using Substitution [L3][CO1][10M] theorem. 20 3Ω 5Ω 14V

QUESTION BANK2023-2410. a. Define statement of Thevenin's theorem.[L1][C01][2M]b. Define statement of Reciprocity theorem.[L1][C01][2M]c. Define statement of Tellegen's theorem.[L1][C01][2M]d. Define statement of Milliman's theorem.[L1][C01][2M]e. Define statement of Substitution theorem.[L1][C01][2M]

## <u>UNIT –II</u>

- 1. Derive the transient response of R-L series circuit having DC excitation? [L2][CO2] [10M]
- 2. Derive the expression for current in R-C series circuit having DC excitation? [L2][CO2][10M]
- a. A DC voltage of 20 V is applied in an R–L circuit where R = 5Ω and L = 10 [L3][CO2][5M]
  H. Calculate (a) the current i; (b) voltage across resistor and voltage across the inductor; and (c) the time constant.



- b. The constant voltage of 100 V is applied at t = 0 to a series R–C circuit [L3][CO2][5M] having R = 5M $\Omega$ , C = 20 $\mu$ F. By assuming no initial charge to the capacitor, find current i and the voltage across R and C.
- **4.** a. A coil having a resistance of  $100\Omega$  and an inductance of 20 H is connected to [L3][CO2][5M] a 200 V DC source. Suddenly, the coil is disconnected from the battery and short-circuited. Calculate the following:
  - 1. The current in the coil at t = 0
  - 2. Rate of change of current at t = 0
  - 3. Time constant
  - b. A circuit has resistance of  $1000\Omega$  and a series capacitance of  $0.1\mu$ F. At t = 0, [L3][CO2][5M] it is connected to a 12 V battery.

Find the following:

- 1. The current at t = 0
- 2. Rate of change of current at t = 0





- 5. Derive the expression for current in case of critically damped series R-L-C [L2][CO2][10M] circuit with DC excitation.
- 6. For the circuit shown in Figure, find the transient current when switch S is [L3][CO2][10M] closed.



|     |    | QUESTION I                                                                      | BANK   | 2023-24       |  |
|-----|----|---------------------------------------------------------------------------------|--------|---------------|--|
| 7.  | a. | Find the final value of $f(t) = 8 (2 - e^{-4t})$ using the final value theorem. | [L3    | [L3][CO2][5M] |  |
|     | b. | Find the initial value of a function whose Laplace transform is given as        | [L3    | ][CO2][5M]    |  |
|     |    | follows:                                                                        |        |               |  |
|     |    | $\frac{(s+1)(s+2)}{s(s+3)(s+4)}$                                                |        |               |  |
| 8.  |    | Evaluate the given function using partial fractions expansion.                  | [L3]   | [CO2][10M]    |  |
|     |    | $L^{-1}\left[\frac{1}{(s-1)(s^2+1)}\right]$                                     |        |               |  |
| 9.  | a. | Find the Laplace transform of sin $\omega t$                                    | [L3][  | CO2][5M]      |  |
|     | b. | F(s) = $\frac{(S+2)}{S(s+3)(s+4)}$                                              | [L3][  | CO2][5M]      |  |
| 10. | a. | Define time constant.                                                           | [L1][/ | CO2][2M]      |  |
|     | b. | What is the significance of initial conditions.                                 | [L1][  | CO2][2M]      |  |
|     | c. | Define Laplace transform of a function $f(t)$ .                                 | [L1][  | CO2][2M]      |  |
|     | d. | State Initial value theorem.                                                    | [L1][  | CO2][2M]      |  |
|     | e. | State Final value theorem.                                                      | [L1][  | CO2][2M]      |  |

## <u>UNIT –III</u>

| 1 | a) Explain the phasor relation for R, L, C elements.           | [L1][CO3] | [6M] |
|---|----------------------------------------------------------------|-----------|------|
|   | b) Find $v(t)$ and $i(t)$ in the circuit shown in figure below | [L3][CO3] | [4M] |
|   |                                                                |           |      |



2 a) Explain phasor representation of series R L circuit. [L2][CO3] [5M]

b) A voltage of 120 V at 50 Hz is applied to a resistance, R in series with a [L3][CO3] [5M] capacitance, C. The current drawn is 2 A, and the power loss in the resistance is 100 W. Calculate the resistance and the capacitance.

**3** Derive the necessary relations for performing star to delta and delta to [L1][CO3] [10M] startransformations.

**4** For the circuit shown in Figure below determine the equivalent resistance [L3][CO3] [10M] between (1)A and B and (2) A and N.



5 a) Define active power and reactive power. [L1][CO3] [4M]
b) A series circuit having pure resistance of 40Ω, pure inductance of [L3][CO3] [6M]
50.07mH and a capacitor is connected across 400V 50Hz ac supply. This

50.07mH and a capacitor is connected across 400V,50Hz ac supply. This circuit draws a current of 10A. calculate (i) capacitor value (ii) power factor of the circuit.

6 a) Explain phasor representation of series R- L- C circuit. [L2][CO3]

b) A series RLC circuit containing a resistance of  $12\Omega$ , an inductance [L3][CO3] [5M] of 0.15H and a capacitor of 100uF are connected in series across a 100V, 50Hz supply. Calculate the total circuit impedance, the circuit current, power factor and draw the voltage phasor diagram.

- 7 The impedance of a parallel circuit are  $Z1 = (6+j8) \Omega$  and  $Z2 = (8-j6) \Omega$ . If [L3][CO3] [10M] the applied voltage is 120V, find (i) Current and power factor of each branch (ii)Total current and over all power factor(iii) power consumed by each impedance.
- **8** a) Explain phasor representation of series R C circuit.

b) A non inductive resistor of  $10\Omega$  is in series with a capacitor of  $100\mu$ F [L3][CO3] [5M] across a 250V, 50Hz ac supply. Determine the current taken by the capacitor and power factor of the circuit

**9** Determine the mesh currents for the circuit shown in figure.



10.a What is the phase of a sine wave?

b. Explain j operator.

[L1][CO3] [2M] [L1][CO3] [2M]

[L3][CO3]

[L2][CO3]

[L3][CO3]

[5M]

[5M]

[10M]

- c. Draw equivalent circuit of a pure inductor connected to a sinusoidal [L2][CO3] [2M] supply infrequency domain.
- d. Draw the impedance triangle of series R-L circuit with sinusoidal supply. [L2][CO3] [2M]
- e. Convert the  $\Delta$  network to an equivalent Y network.



Network Analysis

[2M]

## <u>UNIT –IV</u>

- **1.** a. Derive an equation for the resonance frequency of a series resonant circuit in [L2][CO4] [7M] terms of L and C.
  - b. A resistance of  $10\Omega$ , a capacitor of 470pF and inductor of 0.5mH are [L2][CO4] [3M] connected in series across a variable frequency voltage source. Calculate the value of frequency at which the circuit will attain the resonance condition.
- 2. a. Derive an equation for the Q-factor of a series resonant circuit in terms of R, [L2][CO4] [5M] L and C.
  - b. In the R–L–C series circuit shown in Figure, resonance occurs when the value [L2][CO4] [5M] of C is  $20\mu$ F. The supply voltage is v = 20 sin 500 t. Find the values of L and Q-factor.



3. A resistor, an inductor and a capacitor are connected in series across at a 100 [L2][CO4] [10M] V variable frequency supply source, as shown in Figure. At a frequency of 250 Hz, the circuit resonates and the current is 0.8 A. At resonance, the voltage across the capacitor is measured as 200 V. Determine the values of r, L and C.



**4.** Calculate the value of the inductance L for which the parallel circuit shown in [L2][CO4] [10M] Figure will be in resonance at a frequency of 2000 rad/s.



- **5.** Derive the relationship between Q-factor and Band Width of a resonant [L2][CO4] [10M] circuit.
- **6.** a. A parallel circuit is shown in Figure. Calculate the value of R in the circuit for [L2][CO4] [5M] which the circuit will resonate.



Network Analysis

Page 7

- b. A parallel resonant circuit is driven by ac mains supply 230V, 50Hz. Find [L2][CO4] [5M] value of C required to be varied to achieve antiresonance in the circuit if it is shunted with a coil of 1mH inductance and  $10\Omega$  resistance.
- 7. Derive the relationship between the self inductance  $L_1$ ,  $L_2$  and mutual [L2][CO4] [10M] inductance M of two coupled coils.
- 8. Calculate the phasor currents  $I_1$  and  $I_2$  in the circuit shown in Figure.



- 9. If a coil of 800µH is magnetically coupled to another coil of 200µH. The [L2][CO4] [10M] coefficient of coupling between two coils is 0.05. Calculate inductance if two coils are connected in, (i) Series aiding (ii) series opposing (iii) Parallel aiding (iv) parallel opposing.
- 10. a. Define Resonance.[L1][CO4] [2M]b. Define Bandwidth.[L1][CO4] [2M]c. Define Q- Factor.[L1][CO4] [2M]d. Define Self-inductance.[L1][CO4] [2M]e. Define Mutual inductance.[L1][CO4] [2M]



4Ω

2<mark>Ω</mark>

**Network Analysis** 

1.

2.

3.

4.

5.

QUESTION BANK 2023-24

## UNIT –V

| _   |          | QUESTION B                                                                                                                          | ANK          | 2023-24                    |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|
| 6.  | a.<br>b. | Derive the expressions for Z-parameters in terms of ABCD-parameters.<br>Derive the expressions for Admittance and hybrid parameters | [L2]<br>[L2] | ][CO5] [5M]<br>][CO5] [5M] |
| 7.  |          | Explain in detail about Z-parameters and ABCD parameters                                                                            | [L2]         | [CO5] [10M]                |
| 8.  |          | Show that for a series connected two-port networks the overall Z- parameters                                                        | [L4][        | CO5] [10M]                 |
|     |          | is equal to the addition of individual Z-parameters of the two networks                                                             |              |                            |
| 9.  |          | Explain what is the effect overall Transmission parameters when two or more                                                         | [L2][        | CO5] [10M]                 |
|     |          | two- port networks are connected in cascade                                                                                         |              |                            |
| 10. | a.       | Define Two-port network.                                                                                                            | [L1][        | CO5] [2M]                  |
|     | b.       | Draw the equivalent circuit of Z-parameters.                                                                                        | [L1][        | CO5] [2M]                  |
|     | c.       | What is the condition for Symmetry in Z and Y parameters?                                                                           | [L1][        | CO5] [2M]                  |
|     | d.       | What is the condition for Reciprocity in Z and Y parameters?                                                                        | [L1][        | CO5] [2M]                  |
|     | e.       | Write the equations for Z-parameters in terms of Y-parameters.                                                                      | [L1][        | CO5] [2M]                  |